Thank you for purchasing a Shimaden product. Please check that the delivered product is the correct item you ordered. Please do not begin operating this product before you read this instruction manual thoroughly and understand its contents.

"Notice"
Please ensure that this instruction manual is given to the final user of the instrument.

"Preface"
This instruction manual is meant for those who will be involved in the wiring, installation, operation and routine maintenance of the FP93. It describes matters to be attended to in handling the FP93, how to install it, wiring, its functions and operating procedure. Keep this manual at the work site while handling the instrument and follow the guidance provided herein.
Contents

1. Safety Rules ... 3
2. Introduction ... 4
2-1. Check before Use 4
2-2. Handling Instruction 4
3. Installation and Wiring 4
3-1. Installation Site 4
3-2. Mounting ... 5
3-3. External Dimensions and Panel Cutout 5
3-4. Wiring ... 5
3-5. Terminal Layout 6
3-6. Terminal Arrangement Table 6
4. Names and Functions of Parts on Front Panel 7
5. Explanation of Screens and Setting 9
5-1. Parameter Flow 9
 (1) How to Move from Screen Group to Screen Group and Explanation of Screen Groups 9
5-2. Application of Power and Display of Initial Screen ... 13
5-3. How to Change Screens 13
 (1) How to Change Screen Groups 0~5 13
 (2) How to Change Screens in Screen Group 0 13
 (3) How to Change Screens in Screen Group 3 14
 (4) How to Change Set Values (Data) 14
5-4. Before Starting Up 14
 (1) Checking Wiring 14
 (2) Applying Power 14
 (3) Setting Measuring Range 14
 (4) Setting Control Mode 14
 (5) Setting Control Output Characteristic 14
 (6) Setting Other Data 14
 (7) Note on Initialization upon Change of Data 14
5-5. Explanation of Screen Group 0 and Setting 15
 (1) Setting HLD Execution 15
 (2) Setting ADV Execution 15
 (3) Setting Auto Tuning (AT) Execution 15
5-6. Explanation of Screen Group 1 and Setting 15
 (1) Setting Start SV 15
 (2) Setting End Step 15
 (3) Setting Time Signal 16
 (4) Setting Event Action Point 16
 (5) Setting the Number of Program Executions 16
 (6) Setting PV Start 17
 (7) Setting Guarantee Soak Zone 17
5-7. Explanation of Screen Group 2 and Setting 17
 (1) Setting Step SV 17
 (2) Setting Step Time 17
 (3) Setting PID No. 17
5-8. Explanation of Screen Group 3 and Setting 17
 (1) Setting ON/OFF of FIX Mode 17
 (2) Setting FIX SV Value. 17
 (3) Setting FIX No. 17
 (4) Setting FIX Event Action Point 17
5-9. Explanation of Screen Group 4 and Setting 18
 (1) Setting Outputs of PID Nos. 1~6 18
 (2) Setting Zone PID 18
5-10. Explanation of Screen Group 5 and Setting 19
 (1) Setting the Number of Patterns 19
 (2) Setting Time Unit 19
 (3) Setting With/Without Power Failure Compensation ... 19
 (4) Setting Input Abnormality Mode 19
 (5) Setting Measuring Range Code 19
 (6) Setting Input Unit 19
 (7) Setting Input Scaling 19
 (8) Setting PV Bias. 19
 (9) Setting PV Filter 19
 (10) Setting Output Control Characteristics 20
 (11) Setting Proportional Cycle 20
 (12) Setting SV Limiter 20
 (13) Setting External Control Input 20
 (14) Setting Events 20
 (15) Setting Status Output (DO) 21
 (16) Setting Analog Output 21
 (17) Setting Communication 21
 (18) Setting Keylock 22
5-11. Measuring Range Codes Table 22
6. Operation and Functions 23
6-1. Using FIX Mode 23
6-2. Setting Target Value (SV) 23
6-3. Setting Output Manually 23
6-4. Auto Tuning (AT) 24
6-5. PID Action .. 24
6-6. Manual Reset 24
6-7. Output Lower Limit and Higher Limit Setting Limiters ... 24
6-8. Proportional Cycle Time 24
6-9. Zone PID ... 25
6-10. External Control Input (DI) 25
6-11. Events ... 26
6-12. Setting Event Standby Action 26
6-13. Diagrams of Alarm Actions Selectable as Event ... 26
6-14. Event and Status Output Actions 26
6-15. Time Signal 27
6-16. Status (DO) Output 28
6-17. Auto Return Function 28
6-18. Notes on RAM as Communication Memory Mode ... 28
7. Error Codes, Causes and Remedies 28
8. Record of Parameter Setting 29
9. Specifications 33
1. Safety Rules

For matters regarding safety, potential damage to equipment and/or facilities, additional instructions and notes are indicated by the following headings.

⚠️ **WARNING**

This heading indicates hazardous conditions that could cause injury or death of personnel unless extreme caution is exercised.

⚠️ **CAUTION**

This heading indicates hazardous conditions that could cause damage to equipment and/or facilities unless extreme caution is exercised.

Note

This heading indicates additional instructions and/or notes.

The mark ② represents a protective conductor terminal. Make sure to ground it properly.

WARNING

The FP93 is designed for controlling temperature, humidity and other physical quantities of general industrial equipment. Avoid using it for control of devices which may seriously affect the human life. When used, adequate and effective safety measures must be taken. No warranty is valid in the case of an accident arising from the use of this product without such safety measures.

WARNING

- For using this instrument, house it in a control box or the like lest terminals should be in contact with a person.
- Don't draw out the instrument from the case. Don't let your hand or a conductive body in the case. It may lead to serious injury or death due to an electric shock.
- Make sure to ground protective conductor terminals.

CAUTION

To avoid damage to connected equipment, facilities or products due to a fault of the product, safety measures must be taken before usage, such as the installation of a fuse, an overheating protection device and the like. No warranty is valid in the case of an accident arising from the use of this product without such safety measures.

CAUTION

- The ② mark on the plate affixed to the instrument:
 On the terminal nameplate affixed to the case of this instrument, the alert mark ② is printed. This is to warn you of the risk of electric shock which may result if the charger is touched while being energized.
- As a means to turn the power off, a switch or a breaker should be installed in the external power circuit to be connected to the power terminal of the instrument. Fix the switch or the breaker adjacently to the instrument in a position which allows it to be operated with ease, with an indication that it is a means of turning the power off. Use a switch or a breaker which meets the requirement of IEC60947.
- Fuse:
 Since the instrument does not have a built-in fuse, do not forget to install a fuse in the power circuit to be connected to the power terminal. A fuse should be positioned between a switch or a breaker and the instrument and mounted on the L side of the power terminal.
 - Fuse rating/characteristics: 250V AC 1A/medium lagged or lagged type.
 - Use a fuse which meets the requirement of IEC60127.
- Voltage/current of a load to be connected to the output terminal and the alarm terminal should be within a rated range. Otherwise, the temperature will rise to reduce the life of product and/or to result in problems with the product. For rated voltage/current, see "9. Specifications" of this manual.
 The output terminal should be connected with a device which meets the requirements of IEC61010.
- A voltage/current different from that of the input specification should not be applied to the input terminal. It may reduce the life of the product and/or result in problems with the product. For rated voltage/current, see "9. Specifications" of this manual.
 In the case of voltage or current input, the input terminal should be connected to a device which meets the requirement of IEC61010.
 The instrument is provided with a draft hole for heat discharge. Take care to prevent metal and other foreign matters from getting into it. Failure to do so may result in trouble with the instrument or may even cause a fire.
- Don't block the draft hole or allow dust or the like to stick to it. A rise in temperature or insulation failure may result in a reduction of the life of the product and/or problems with it or may cause a fire.
 For spaces between installed instruments, refer to “3-3. External Dimensions and Panel Cutout.”
- It should be noted that repeated tolerance tests against voltage, noise, surge, etc. may lead to deterioration of the instrument.
- Users are prohibited from remodeling the product or abnormal use of it.
2. Introduction

2-1. Check before Use
This product has been fully inspected for quality assurance prior to shipment. Nevertheless, you are requested to make sure that there is no error, damage or shortage of delivered items by checking the model codes and the external view of the product and the number of accessories.

① Confirmation of Model Codes
Check the model codes stuck to the case of the product to ascertain if the respective codes designate what were specified when you ordered it, referring to the following code table:

Example of model codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP93</td>
<td>Name of product</td>
</tr>
<tr>
<td>8</td>
<td>Input</td>
</tr>
<tr>
<td>90</td>
<td>8: Multi-input: Thermocouple, R.T.D., Voltage (mV), Voltage (V)</td>
</tr>
<tr>
<td>1</td>
<td>4: Current (mA) (attached with an external resistor 250 Ω)</td>
</tr>
<tr>
<td>3</td>
<td>9: With remarks</td>
</tr>
<tr>
<td>5</td>
<td>Control output</td>
</tr>
<tr>
<td>0</td>
<td>Y: Contact</td>
</tr>
<tr>
<td>1</td>
<td>1: Current</td>
</tr>
<tr>
<td>3</td>
<td>P: SSR drive voltage</td>
</tr>
<tr>
<td>5</td>
<td>V: Voltage</td>
</tr>
<tr>
<td>9</td>
<td>X: With remarks</td>
</tr>
<tr>
<td>0</td>
<td>Power supply</td>
</tr>
<tr>
<td>100~240V AC</td>
<td>90:</td>
</tr>
<tr>
<td>24V AC/DC</td>
<td>08:</td>
</tr>
<tr>
<td>0</td>
<td>Status output</td>
</tr>
<tr>
<td>1</td>
<td>(DO) 0: Without</td>
</tr>
<tr>
<td>1</td>
<td>1: With</td>
</tr>
<tr>
<td>9</td>
<td>9: With special note</td>
</tr>
<tr>
<td>0</td>
<td>Analog output</td>
</tr>
<tr>
<td>0</td>
<td>(AO) 0: Without</td>
</tr>
<tr>
<td>3</td>
<td>3: 0~10mA</td>
</tr>
<tr>
<td>4</td>
<td>4: 4~20mA</td>
</tr>
<tr>
<td>6</td>
<td>6: 0~10V</td>
</tr>
<tr>
<td>9</td>
<td>9: With remarks</td>
</tr>
<tr>
<td>5</td>
<td>Communication</td>
</tr>
<tr>
<td>0</td>
<td>0: Without</td>
</tr>
<tr>
<td>5</td>
<td>5: RS-485</td>
</tr>
<tr>
<td>7</td>
<td>7: RS-232C</td>
</tr>
<tr>
<td>9</td>
<td>9: With remarks</td>
</tr>
<tr>
<td>0</td>
<td>Remarks</td>
</tr>
<tr>
<td>0</td>
<td>0: Without</td>
</tr>
<tr>
<td>9</td>
<td>9: With</td>
</tr>
<tr>
<td>1</td>
<td>Accessories</td>
</tr>
<tr>
<td>This instruction manual</td>
<td>1 copy</td>
</tr>
<tr>
<td>The Communication interface instruction manual (in case optional communication function is added)</td>
<td>1 copy</td>
</tr>
<tr>
<td>Unit seals</td>
<td>1 sheet</td>
</tr>
<tr>
<td>External resistor 250 Ω (for current input)</td>
<td>1 pc.</td>
</tr>
<tr>
<td>Terminal resistor 120 Ω (for RS-485)</td>
<td>1 pc.</td>
</tr>
</tbody>
</table>

② Accessories

NOTE: For any problem with the product, shortage of accessories or request for information, please contact our sales agent.

2-2. Handling Instruction
① Don’t operate the keys on the front panel with a hard or sharply pointed object. Operate the keys only by softly touching them by your fingertips.
② When cleaning the instrument, wipe it gently with a dry cloth. Never use solvent such as a thinner.

3. Installation and Wiring

3-1. Installation Site (environmental conditions)

This instrument should not be used in any of the places mentioned below. Selection of these places may result in trouble with the instrument, damage to it or even a fire.

① Where flammable gas, corrosive gas, oil mist and particles that can deteriorate electrical insulation are generated or abundant.
② Where the temperature is below –10°C (14°F) or above 50°C (122°F).
③ Where the relative humidity is above 90%RH or below dew point.
④ Where highly intense vibration or impact is generated or transferred.
⑤ Near high voltage power lines or where inductive interference can affect the operation of the instrument.
⑥ Where the instrument is exposed to dew drops or direct sunlight.
⑦ Where the height is above 2000 m.
⑧ Outdoors.
⑨ Where the instrument is exposed to the flow of blowing air.

NOTE: The environmental conditions belong to the installation category II of IEC60664 and the degree of pollution is 2.
3-2. Mounting

For safety's sake and to protect the functionality of the product, don't draw out its body from the case. If it needs to be drawn out for replacement or repair, contact our sales agent.

1. Cut a hole for mounting the controller in the panel by referring to the cutout drawing in Section 3-3.
2. The panel thickness should be 1.0~4.0 mm.
3. As the instrument is provided with pawls for fixing, just press it firmly from the front of the panel. The case is fixed to the panel by means of the pawls.
4. The FP93 is designed as a panel-mounting model. Never use it without mounting on the panel.

3-3. External Dimensions and Panel Cutout

3-4. Wiring

In wiring operation, close attention should be paid to the following:

Make sure to disconnect this instrument from any power source during wiring operation to prevent an electric shock.
Be certain that the protective conductor terminal () is properly grounded. Otherwise, an electric shock may result.
To prevent an electric shock, don't touch wired terminals and other charged elements while they are being energized.

1. In wiring operation, follow the terminal layout shown in Section 3-5 and the terminal arrangement in Section 3-6 and make sure to carry out the correct wiring.
2. Use press-fit terminal which fits an M3.5 screw and has a width of 7 mm or less.
3. In case of thermocouple input, use a compensating cable compatible with the selected type of thermocouple.
4. In the case of R.T.D. input, the resistance of a single lead wire must be 5 Ω or less and the three wires must have the same resistance.
5. The input signal wire must not be accommodated with a high-voltage power cable in the same conduit or duct.
6. Shield wiring (single point grounding) is effective against static induction noise.
7. Twisting the input wires at short and equal intervals is effective against electromagnetic induction noise.
8. In wiring for power supply, use a wire or cable whose performance is equal to or higher than the 600V vinyl insulated wire having a sectional area of 1 mm² or larger.
9. The wire for grounding must have a sectional area of 2 mm² or larger and must be grounded at a grounding resistance of 100 Ω or less.
10. Clamp the screws of terminals firmly. Clamping torque: 1.0 N·m (10kgf·cm)
11. If the instrument appears to be easily affected by power supply noise, use a noise filter to prevent malfunctioning.
12. Mount the noise filter on the grounded panel and make wire connection between the noise filter output and the power line terminals of the controller as short as possible.

Make this wire as short as possible.

Recommended noise filter: TDK's ZMB2203-13
3-5. Terminal Layout (Follow the terminal layout and terminal arrangement table shown below in your wiring operation.)

![Terminal Layout Diagram]

3-6. Terminal Arrangement Table

<table>
<thead>
<tr>
<th>Name of terminal</th>
<th>Description/Code</th>
<th>Terminal No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>100–240V AC/24V AC: L, 24V DC: +</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>100–240V AC/24V AC: N, 24V DC: –</td>
<td>12</td>
</tr>
<tr>
<td>Protective conductor</td>
<td>Protective grounding</td>
<td>13</td>
</tr>
<tr>
<td>Input</td>
<td>Voltage (V) Current (mA): +</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>R.T.D.: B, thermocouple/Voltage (mV, V), Current (mA): –</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>R.T.D.: B</td>
<td>10</td>
</tr>
<tr>
<td>Control output</td>
<td>Contact: COM, SSR drive voltage/Voltage/Current: +</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Contact: NO, SSR drive voltage/Voltage/Current: –</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Contact: NC</td>
<td>16</td>
</tr>
<tr>
<td>Event output</td>
<td>COM</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>EV1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>EV2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>EV3</td>
<td>20</td>
</tr>
<tr>
<td>Analog output (option)</td>
<td>+</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>22</td>
</tr>
<tr>
<td>Communication (option)</td>
<td>SG</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>RS-232C: SD, RS-485: +</td>
<td>24</td>
</tr>
<tr>
<td>External control input</td>
<td>COM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>5</td>
</tr>
<tr>
<td>Status output (DO)(option)</td>
<td>COM</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>DO1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>DO2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>DO3</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>DO4</td>
<td>30</td>
</tr>
</tbody>
</table>

NOTE 1: With thermocouple, voltage, or current input, shorting across B and B terminal will cause an error. Leave terminal No.10 open.

NOTE 2: With voltage (V) or current (mA) input, don’t connect anything with terminal No.7. Any connection with it may cause problems with the instrument.
4. Names and Functions of Parts on Front Panel

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
</table>
| ① Measured value (PV) display | (1) Present measured value is displayed in the screen group 0. (red)
(2) Type of parameter is shown on each parameter screen. |
| ② Action display | (1) ➞ (green) Ascending action lamp
- Lights while ascending step is in execution.
(2) ➞ (green) Level action lamp
- Lights while level step is in execution.
(3) ➞ (green) Descending action lamp
- Lights while descending step is in execution.
(4) OUT (green) Control output lamp
- Lights when contact or SSR drive voltage output is ON, goes out when output turns OFF.
- For current or voltage output, brightness increases or decreases in proportion to output.
(5) RUN (green) RUN action lamp
- Lights while program is in execution.
- Blinks while FIX is in execution.
(6) HLD (green) HLD action lamp
- Lights when a brief suspension (Hold) is set while program is in execution.
(7) GUA (green) GUA action lamp
- Lights in case PV value does not reach a set range of deviation values when moving to level step during program execution (guarantee soak).
(8) COM (green) Communication action lamp
- Lights when COM mode is selected in case the instrument includes the communication option.
- The lamp does not light if local is selected as communication mode.
(9) AT (green) Auto tuning action lamp
- Blinks while AT is in execution. The lamp lights during standby for AT and goes out when AT action comes to an end or is terminated.
(10) MAN (green) Manual control output action lamp
- Blinks when manual control output is selected on output screen. The lamp remains extinct during automatic control output.
(11) EV1 (orange) Event 1 output action lamp
- Lights when event 1 turns ON.
EV2 (orange) Event 2 output action lamp
- Lights when event 2 turns ON.
EV3 (orange) Event 3 output action lamp
- Lights when event 3 turns ON.
(12) DO1 (green) Status output 1 action lamp
- Lights when status output 1 turns ON.
DO2 (green) Status output 2 action lamp
- Lights when status output 2 turns ON.
DO3 (green) Status output 3 action lamp
- Lights when status output 3 turns ON.
DO4 (green) Status output 4 action lamp
- Lights when status output 4 turns ON. |
| ③ Pattern number display | (1) Pattern No. currently selected is displayed. (green) |
| ④ Step No. Display | (1) Step No. currently in execution is displayed. (green)
(2) Step No. currently set in screen group 2 is displayed.
(3) PID No. currently set in screen group 4 is displayed. |
| ⑤ Target set value (SV) display | (1) Target set value is displayed on the basic screen of screen group 0. (green)
(2) Present output value is displayed in % on the output monitor screen of screen group 0.
(3) Selected item and set value are displayed on each parameter screen. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (parameter) key</td>
<td>• Pressing this key on any screen calls the next screen onto display.</td>
</tr>
<tr>
<td></td>
<td>• Pressing this key continuously for 3 seconds calls the initial screen of screen group 5.</td>
</tr>
<tr>
<td>(2) (up) key</td>
<td>• Used to increase a numerical value on a numerical value setting screen.</td>
</tr>
<tr>
<td></td>
<td>• Used to select an item on an item selection screen.</td>
</tr>
<tr>
<td>(3) (down) key</td>
<td>• Used to decrease a numerical value on a numerical value setting screen.</td>
</tr>
<tr>
<td></td>
<td>• Used to select an item on an item selection screen.</td>
</tr>
<tr>
<td>(4) (entry) key</td>
<td>• Used to register a set data changed by means of the (up) or (down) key on each screen (the decimal point of the rightmost digit goes out).</td>
</tr>
<tr>
<td></td>
<td>• When pressed for 3 seconds continuously on output (OUT) screen, this key switches between automatic output and manual output.</td>
</tr>
<tr>
<td>(5) (group) key</td>
<td>• When pressed in the middle of setting in screen groups 1, 3, 4 or 5, the initial screen of the group is called onto display. When pressed in the screen group 2, the initial screen of screen group 1 is called onto display.</td>
</tr>
<tr>
<td></td>
<td>• When pressed on the basic screen, the display moves to screen group 1, screen group 3, screen group 4 and the basic screen in the order mentioned.</td>
</tr>
<tr>
<td></td>
<td>• When pressed on the initial screen of screen group 5, the basic screen is called.</td>
</tr>
<tr>
<td>(6) (pattern) key</td>
<td>• When pressed during stop (RST) on the basic screen, a starting pattern can be selected. It is registered by pressing the (entry) key.</td>
</tr>
<tr>
<td></td>
<td>• This key is used to move to other screen groups. For details, see Section 5-1 or 5-5.</td>
</tr>
<tr>
<td>(7) (step) key</td>
<td>• This key is used to move to other screen groups. For details, see Section 5-1 or 5-5.</td>
</tr>
<tr>
<td>(8) (run/reset) key</td>
<td>• When pressed continuously for 3 seconds on the basic screen, execution (RUN) and stop (RST) are switched.</td>
</tr>
<tr>
<td></td>
<td>• When pressed in any of screen groups 1~5, the preceding screen is returned onto display.</td>
</tr>
</tbody>
</table>
5. Explanation of Screens and Setting

5-1. Parameter Flow

NOTE: Four kinds of frame lines signify the following. The figure on the left of each frame represents screen No.

- Screens regularly shown by key operation and other means
- Screens shown when appropriate option is added or selected
- Screens may or may not be shown depending upon setting
- Screens for monitoring (without automatic return)

(1) How to Move from Screen Group to Screen Group and Explanation of Screen Groups

NOTE 1: To move among screen groups 0, 1, 3 and 4, press the key on the basic screen of screen group 0 or the initial screens of screen group 1, 3 or 4.

NOTE 2: To move between screen groups 0 and 5, pressing the key for 3 seconds continuously on the basic screen of screen group 0 calls the initial screen of screen group 5, and pressing the key on the initial screen of screen group 5 calls the basic screen of screen group 0.

NOTE 3: Pressing the key in any screen group calls the next screen and pressing it on the last screen of a screen group calls the initial screen.

NOTE 4: A key shown above and outside a chain line frame () surrounding each screen group means that you can move from any of the screen within the frame to a designated screen by pressing that key. (This applies to screen groups 1, 2, 3, 4 and 5.) Example: Screen Group 1

NOTE 5: The screen group 1 has patterns 1–4. (One pattern has 16 setting screens.) The number of patterns is selectable (which is set on the 5-1 screen; the initial value is 4).

NOTE 6: The screen group 2 has steps 1 to 40 (one step containing three setting screens). The number of steps is selectable (which is set on the 1-2 screen; the initial value is 10).

NOTE 7: The screen group 4 has 6 PID Nos. (each having 8 setting screens) and Zone PID.

NOTE 8: Within a screen group, you can move from screen to screen by pressing an appropriate key indicated in screen sequences (which are shown in the following page on).
<table>
<thead>
<tr>
<th>Screen Group 5</th>
<th>Initial setting screen group</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-0</td>
<td>Initial screen</td>
</tr>
<tr>
<td>5-1</td>
<td>The number of patterns setting</td>
</tr>
<tr>
<td>5-2</td>
<td>Time unit setting</td>
</tr>
<tr>
<td>5-3</td>
<td>With/without power failure compensation setting</td>
</tr>
<tr>
<td>5-4</td>
<td>Input abnormality mode setting</td>
</tr>
<tr>
<td>5-5</td>
<td>Measuring range code setting</td>
</tr>
<tr>
<td>5-6</td>
<td>Input unit setting</td>
</tr>
<tr>
<td>5-7</td>
<td>Input scaling lower limit value setting</td>
</tr>
<tr>
<td>5-8</td>
<td>Input scaling higher limit value setting</td>
</tr>
<tr>
<td>5-9</td>
<td>Input scaling decimal point position setting</td>
</tr>
<tr>
<td>5-10</td>
<td>PV bias setting</td>
</tr>
<tr>
<td>5-11</td>
<td>PV filter setting</td>
</tr>
<tr>
<td>5-12</td>
<td>Control characteristics setting</td>
</tr>
<tr>
<td>5-13</td>
<td>Proportional cycle setting</td>
</tr>
<tr>
<td>5-14</td>
<td>SV limiter lower limit value setting</td>
</tr>
<tr>
<td>5-15</td>
<td>SV limiter higher limit value setting</td>
</tr>
<tr>
<td>5-16</td>
<td>External control input 2 action code setting</td>
</tr>
<tr>
<td>5-17</td>
<td>External control input 3 action code setting</td>
</tr>
<tr>
<td>5-18</td>
<td>External control input 4 action code</td>
</tr>
<tr>
<td>5-19</td>
<td>Event 1 type setting</td>
</tr>
<tr>
<td>5-20</td>
<td>Event 1 hysteresis setting</td>
</tr>
<tr>
<td>5-21</td>
<td>Event 1 standby action setting</td>
</tr>
<tr>
<td>5-22</td>
<td>Event 2 type setting</td>
</tr>
<tr>
<td>5-23</td>
<td>Event 2 hysteresis setting</td>
</tr>
<tr>
<td>5-24</td>
<td>Event 2 standby action setting</td>
</tr>
<tr>
<td>5-25</td>
<td>Event 3 type setting</td>
</tr>
<tr>
<td>5-26</td>
<td>Event 3 hysteresis setting</td>
</tr>
<tr>
<td>5-27</td>
<td>Event 3 standby action setting</td>
</tr>
<tr>
<td>5-28</td>
<td>Status output 1 action code setting</td>
</tr>
<tr>
<td>5-29</td>
<td>Status output 2 action code setting</td>
</tr>
<tr>
<td>5-30</td>
<td>Status output 3 action code setting</td>
</tr>
<tr>
<td>5-31</td>
<td>Status output 4 action code setting</td>
</tr>
<tr>
<td>5-32</td>
<td>Analog output type setting</td>
</tr>
<tr>
<td>5-33</td>
<td>Analog output scaling lower limit value setting</td>
</tr>
<tr>
<td>5-34</td>
<td>Analog output scaling higher limit value setting</td>
</tr>
<tr>
<td>5-35</td>
<td>Communication mode setting</td>
</tr>
<tr>
<td>5-36</td>
<td>Communication address setting</td>
</tr>
<tr>
<td>5-37</td>
<td>Communication speed setting</td>
</tr>
<tr>
<td>5-38</td>
<td>Communication data format setting</td>
</tr>
<tr>
<td>5-39</td>
<td>Start character setting</td>
</tr>
<tr>
<td>5-40</td>
<td>BCC operation type setting</td>
</tr>
<tr>
<td>5-41</td>
<td>Delay time setting</td>
</tr>
<tr>
<td>5-42</td>
<td>Communication memory mode setting</td>
</tr>
<tr>
<td>5-43</td>
<td>Keylock setting</td>
</tr>
</tbody>
</table>

- 12 -
5-2. Application of Power and Display of Initial Screen
When power is applied, the initial screen and two screens are displayed successively, each for about 1 second as shown below. Then the basic screen is displayed.

```plaintext
Display of model code: FP93
Input type (TC: Thermocouple, RTD: R.T.D., MV: Voltage (mV), V: Voltage (V), MA: Current (mA)) display

Display of control output
Output type (C: Contact, V: SSR drive voltage, M: Voltage, A: Current) display

Display of lower limit value of selected measuring range
Display of higher limit value of selected measuring range

0-0 Basic screen of screen group 0
250
800
0-0 Basic screen of screen group 1
1-0 Program setting initial screen
PGE
PGE
F
F
4-0 PID setting screen group
P
C
D
S
3-0 FIX setting initial screen

5-3 How to Change Screens
(1) How to Change Screen Groups 0~5
- Pressing the key on the basic screen of screen group 0 calls the initial screen of screen group 1.
- Pressing the key on the basic screen of screen group 0 continuously for 3 seconds calls the initial screen of screen group 5.
- Pressing the key on any screen of screen group 1 calls the 2-1 screen of screen group 2.
- Pressing the key on any of the screens of screen group 2 calls the initial screen of screen group 3.
- Pressing the key on the initial screen of screen group 3 calls the initial screen of screen group 4.
- Pressing the key on any screen midway of screen group 0, 1, 3, 4 or 5 calls the initial screen of the screen group.
- Pressing the key on any screen midway of screen group 1, 2, 3, 4 or 5 calls the preceding screen.
(Nevertheless, to return to the initial screen in screen group 1 or 4, you have to press the key or press the key continuously to move to the last screen of the group before returning to the initial screen.

1 How to move among 0~4 screen groups
0-0 Basic screen
250
key
1-0 Program setting initial screen
PGE
PGE
F
key
4-0 PID setting screen group
P
C
D
S
3-0 FIX setting initial screen

2 How to move between screen group 0 and screen group 5
0-0 Basic screen
250
key continuously for 3 seconds
5-0 Initial setting initial screen

(2) How to Change Screen in Screen Group 0
Every time the key is pressed, the next screen is called, and the basic screen is called from the last screen.
0-0 Basic screen
250
key
0-1 Output monitoring screen
1999
key
0-7 AT execution screen
OFF
An omission
```
(3) How to Change Screen in Screen Group 3

Every time the \(\text{F} \) key is pressed, the next screen is called, and the basic screen is called from the last screen. Pressing the \(\text{SET} \) key calls the preceding screen.

(4) How to Change Set Values (Data)

To change data on a screen which is called by pressing the \(\text{F} \) key, use the \(\text{A} \) or \(\text{T} \) key, and register the changed data by pressing the \(\text{RST} \) key.

5-4. Before Starting Up

To begin with, check the wiring and carry out the following on the respective setting screens. (Factory-set items and items already set by equipment manufacturers need not be set here.)

(1) Checking Wiring : Check that the wiring to connected terminals is carried out properly. If the power line is erroneously connected to other terminals, it may cause burnout.

(2) Applying power : Apply operating power. The controller is energized and the data display and other lamps light.

(3) Setting Measuring Range : Select a code from the list of measuring range codes on the 5-5 Measuring range code setting screen. For current, voltage or mV input, lower/higher limit values and the position of decimal point of the contents of display in response to input signal should be set. (Depending on a selected code, selection on the 5-6, 5-7 and 5-8 is also required.)

(4) Setting Control Mode : In the case of ON-OFF (two-position) action, call the 4-1 Output proportional band setting screen of screen group 4 and select OFF for P and register it.

(5) Setting Control Output Characteristic : On the 5-12 Control output characteristics setting screen, select either RA (heating action) or DA (cooling action) for Act according to the purpose of use and register it.

(6) Setting Other Data : Input necessary items such as program, event action and external input of program control. Record necessary data in "8. Record of Parameter Setting" and input them.

(7) Note on Initialization upon Change of Data : When a set data on measuring range code, input unit, higher/lower limit value of input scaling, event type, analog output type or the like is changed, related data is initialized and resetting is required.
5-5. Explanation of Screen Group 0 and Setting

0-0 Basic screen

- Measured value display (PV display)
- Target set value display (SV display)
- Pattern No. display (PTN display)
- Step No. display (STP display)

0-1 Output monitoring screen

- PV display: Display of measured value (PV)
- SV display: Display of target set value (SV) and change of setting (in FIX mode)
- PTN display: Display of pattern No. currently in execution.
- STP display: Display of step No. currently in execution.

0-2 Step remaining time monitoring screen

- The SV display shows remaining time of the step currently in execution.
- In the PROG mode, if stop (RST) is input through external control input (DI) 1 or in the case of a change to FIX mode through DI, the 0-0 basic screen is returned.

0-3 Monitoring screen for the number of pattern executions

- The present number of executions is shown on the SV display.
- This is only shown when RUN is in execution in the PROG mode.
- If stop (RST) is input through external control input (DI) 1 or in the case of a change to FIX mode through DI, the 0-0 basic screen is returned.

0-4 PID No. monitoring screen

- The number of PID currently in use is shown on the SV display.
- This screen is only displayed when RUN is in execution.
- If stop (RST) is input through external control input (DI) 1, the 0-0 basic screen is returned.

0-5 HLD execution setting screen

- Initial value: OFF
- Setting range: ON/OFF
- HLD is put in execution when ON is selected and selection of OFF releases it. Upon execution of HLD, PROG execution is stopped temporarily. The HLD lamp lights during the execution of HLD.
- This screen is only displayed when RUN is in execution in the PROG mode.
- If stop (RST) is input through external control input (DI) 1 or in the case of a change to FIX mode through DI, the 0-0 basic screen is returned.

0-6 ADV execution setting screen

- Initial value: OFF
- Setting range: ON/OFF
- The selection of ON puts ADV in execution. Upon execution of ADV, the step currently in execution is terminated and forced to move to the next step.
- This screen is displayed only when RUN is in execution in the PROG mode.
- If stop (RST) is input through external control input (DI) 1 or in the case of a change to FIX mode through DI, the 0-0 basic screen is returned.

0-7 AT execution setting screen

- Initial value: OFF
- Setting range: ON/OFF
- The selection of ON puts AT in execution and AT is released when OFF is selected. AT execution is possible only when RUN is in execution and the AT lamp blinks during AT execution.

5-6. Explanation of Screen Group 1 and Setting

1-0 Initial screen (pattern 1)

- On PTN display, the number (1 ~ 4; decimal point blinking) of a pattern intended to be set is shown.

1-1 Start SV setting screen

- Initial value: 0
- Setting range: Within limiter
- Temperature at which program is started is set. A change in SV limiter makes the four decimal place blinking.

1-2 End step setting screen

- Initial value: 10
- Setting range: 1 ~ Maximum number of steps
- The number of steps of a program pattern is set. The number of patterns is set on the 5-1 screen (initial value: 4).

For further details, see "6-4. Auto Tuning (AT)."
Setting Time Signal

1-3 Time signal 1 (TS1) ON step setting screen

- Initial value: OFF
- Setting range: OFF, 1 ~ End step
- A step in which TS1 signal is output is set. This screen is not displayed when TS1 ON step is OFF. A change of end step makes four decimal places blink if set value of end step < TS1 ON step setting.

1-4 Time signal 1 (TS1) ON time setting screen

- Initial value: 00.00
- Setting range: 00.00 ~ 99.99
- A time from the start of step in which TS1 signal is output to the output of the signal is set. This screen is not displayed when TS1 ON step is OFF.

- Setting range: 00.00 ~ 99.99
- A time from the start of step in which TS1 signal is output to the output of the signal is set. This screen is not displayed when TS1 ON step is OFF.

1-5 Time signal 1 (TS1) OFF step setting screen

- Initial value: OFF
- Setting range: OFF, 1 ~ End step
- A step in which TS1 signal is stopped is set. This screen is not displayed when TS1 OFF step is OFF. A change of end step makes four decimal places blink if set value of end step < TS1 OFF step setting.

1-6 Time signal 1 (TS1) OFF time setting screen

- Initial value: 00.00
- Setting range: 00.00 ~ 99.99
- A time from the start of step in which TS1 signal is stopped to the stop of the signal is set. This screen is not displayed when TS1 ON step is OFF.

1-7 Time signal 2 (TS2) ON step setting screen

- Initial value: OFF
- Setting range: OFF, 1 ~ End step
- A step in which TS2 signal is output is set. This screen is on display when t_{TS2} (tm) is set for event or status output. A change of end step makes four decimal places blink if set value of end step < TS2 ON step setting.

1-8 Time signal 2 (TS2) ON time setting screen

- Initial value: 00.00
- Setting range: 00.00 ~ 99.99
- A time from the start of step in which TS2 signal is output to the output of the signal is set. This screen is not displayed when TS2 ON step is OFF.

1-9 Time signal 2 (TS2) OFF step setting screen

- Initial value: OFF
- Setting range: OFF, 1 ~ End step
- A step in which TS2 signal is stopped is set. This screen is not displayed when TS2 ON step is OFF. A change of end step makes four decimal places blink if set value of end step < TS2 ON step setting.

1-10 Time signal 2 (TS2) OFF time setting screen

- Initial value: 00.00
- Setting range: 00.00 ~ 99.99
- A time from the start of step in which TS2 signal is stopped to the stop of the signal is set. This screen is not displayed when TS2 OFF step is OFF For details about time signal, refer to "6-15 Time Signal."

Setting Event Action Point

1-11 Event 1 (EV1) action point setting screen

- Initial value: Hd ~ LA Setting range: 1 ~ 9999
- The same as the 1-11 screen except EV1 changed to EV2.

1-12 Event 2 (EV2) action point setting screen

- Initial value: Hd ~ LA Setting range: 1 ~ 9999
- The same as the 1-11 screen except EV1 changed to EV2.

1-13 Event 3 (EV3) action point setting screen

- Initial value: Hd ~ LA Setting range: 1 ~ 9999
- The same as the 1-11 screen except EV1 changed to EV3.

Setting the Number of Program Executions

1-14 The number of program executions setting screen

- Initial value: 1 Setting range: 1 ~ 9999
- The number of executions of a presently set pattern is set. In case a lower number than the number of pattern currently being executed is set, the program is terminated upon execution to the end step.
5-7. Explanation of Screen Group 2 and Setting

(1) Setting Step SV
2-1 Step SV setting screen

![Image of 2-1 Step SV setting screen]

- Initial value: 0.0
- Setting range: Within limiter
- The number of step being set now is shown on STP display (decimal point blinks), and the number (1 ~ 4) of pattern to which the step presently being set belongs is shown on PTN display.
- On SV display, SV of the step is set. A change of SV limiter makes four decimal places blink if a set SV value of the step is outside the SV limiter.

(2) Setting Step Time
2-2 Step time setting screen

![Image of 2-2 Step time setting screen]

- Initial value: 0.01
- Setting range: 0.00 ~ 99.99
- The length of time in which the step is executed is set.

(3) Setting PID No.
2-3 PID No. setting screen

![Image of 2-3 PID No. setting screen]

- Initial value: 0
- Setting range: 0 ~ 6
- The number of PID used in this step is set. The screen is not displayed when zone PID is effective. Although any between 0 and 6 is selectable, setting 0 means that the PID No. remains unchanged from that of the preceding step.
- Whenever 0 is selected, action is carried out as PID No.1.

5-8. Explanation of Screen Group 3 and Setting

3-0 Initial screen

![Image of 3-0 Initial screen]

(1) Setting ON/OFF of FIX Mode
3-1 FIX mode ON/OFF setting screen

![Image of 3-1 FIX mode ON/OFF setting screen]

- Initial value: OFF
- Setting range: OFF/ON
- ON/OFF of FIX mode is set. When FIX is selected in setting external control input (DI), this screen is for monitoring only.

(2) Setting FIX SV Value
3-2 FIX SV value setting screen

![Image of 3-2 FIX SV value setting screen]

- Initial value: 0
- Setting range: 0 ~ 6
- A PID No. in FIX mode is selected. This screen is not displayed during the use of zone PID. When 0 is selected, action is carried out as PID No.1.

(3) Setting FIX No.
3-3 FIX No. setting screen

![Image of 3-3 FIX No. setting screen]

(4) Setting FIX Event Action Point
3-4 FIX event 1 (EV1) action point setting screen

![Image of 3-4 FIX event 1 action point setting screen]

- EV1 action point in FIX mode is set.
- Initial value: Higher limit deviation value (Hd) 2000
- Setting range: 0 ~ 6
- Setting range: Higher limit deviation value (Hd) 2000
- Setting range: Lower limit absolute value (LA) Lower limit value of measuring range
- Higher limit deviation value or lower limit deviation value
- Within or outside of higher/lower limit deviations
- Higher limit absolute value or lower limit absolute value
- Within measuring range

3-5 FIX 2 event 2 (EV2) action point setting screen

![Image of 3-5 FIX 2 event 2 action point setting screen]

- The same as the 3-4 screen except EV1 changed to EV2.

3-6 FIX event 3 (EV3) action point setting screen

![Image of 3-6 FIX event 3 action point setting screen]

- The same as the 3-4 screen except that EV1 is changed to EV3.
5-9. Explanation of Screen Group 4 and Setting
Setting of PID Nos. 1 - 6

(1) Setting Outputs of PID Nos. 1 - 6

4-0 Initial screen

4-1 Output proportional band setting screen

4-2 Output hysteresis setting screen

4-3 Output integral time setting screen

4-4 Output derivative time setting screen

4-5 Output manual reset setting screen

4-6 Output target value function setting screen

4-7 Lower limit output limiter setting screen

4-8 Higher limit output limiter setting screen

4-10 Initial screen

4-11 Zone PID ON/OFF setting screen

4-12 Zone 1 SP setting screen

4-13 Zone 2 SP setting screen

4-14 Zone 3 SP setting screen

4-15 Zone hysteresis setting screen

4-10 Initial screen of zone PID.
5-10. Explanation of Screen Group 5 and Setting

5-0 Initial screen

(1) Setting the Number of Patterns
Setting range: 1 ~ 30
Initial value: 4

(2) Setting Time Unit
Setting range: [hour]/[min]/[sec]
Initial value: 01

(3) Setting With/Without Power Failure Compensation
Setting range: [ON]/[OFF]
Initial value: OFF

(4) Setting Input Abnormality Mode
Setting range: [HL]/[LD]
Initial value: HL

(5) Setting Measuring Range Code
Setting range: 01 ~ 92
Initial value: 05

(6) Setting Input Unit
Setting range: [C]/[F]
Initial value: C

(7) Setting Input Scaling

(8) Setting PV Bias
Setting range: 0 ~ 200 units
Initial value: 0

(9) Setting PV Filter
Setting range: 0 ~ 100 seconds
Initial value: 0

Note:
- When a bias is set, control is also carried out with a corrected value.
- PV bias is used to correct an error of input from sensor or the like.
- PV filter is used to mitigate such undesirable effect. When 0 second is set, filter does not function.
A characteristic of control output is set. RA is for heating and DA for cooling.

Initial value: Y output: 30, P output: 3
Setting range: 1 ~ 120 seconds
Proportional cycling time of control output is set. This screen is not displayed in the case of voltage or current output. For details of proportional cycle, see "6-8. Proportional Cycle."

Initial value: Lower limit value of measuring range
Setting range: Lower limit value of measuring range ~ Higher limit –1 count
When a narrower range than the measuring range is used for target value setting, a lower limit value is set. (It prevents erroneous setting in a dangerous range.)

Initial value: Higher limit value of measuring range
Setting range: ~ + 1 count ~ Higher limit of measuring range
When a wider range than the measuring range is used for target value setting, a higher limit value is set. (It prevents erroneous setting in a dangerous range.)

Note: In SV limiter setting, SV limiter lower limit value<SV limiter higher limit value and the lower limit value is given preference, that is, it is not possible to set a higher value which is less than a lower level + 1 count.

An action code of external control input 2 (DI2) is set. For details of DI input, see "6-10. External Control Input."

This screen does not show

An action code of external control input 4 (DI4) is set. This screen is not displayed when the external control input 2 (DI2) code is (FIX) and when the external control input 3 (DI3) code is (SPT3).

This screen does not show

Table of Event Type Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Type of event</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>None</td>
</tr>
<tr>
<td>Md</td>
<td>Higher limit deviation</td>
</tr>
<tr>
<td>Ld</td>
<td>Lower limit deviation</td>
</tr>
<tr>
<td>Lo</td>
<td>Outside higher/lower limit deviations</td>
</tr>
<tr>
<td>LoP</td>
<td>Within higher/lower limit deviations</td>
</tr>
<tr>
<td>HR</td>
<td>Higher limit absolute value</td>
</tr>
<tr>
<td>LR</td>
<td>Lower limit absolute value</td>
</tr>
<tr>
<td>Sd</td>
<td>Scaleover</td>
</tr>
<tr>
<td>Sc</td>
<td>Scaler</td>
</tr>
<tr>
<td>GSR</td>
<td>Guarantee soak</td>
</tr>
<tr>
<td>T1</td>
<td>Time signal 1</td>
</tr>
<tr>
<td>T2</td>
<td>Time signal 2</td>
</tr>
<tr>
<td>run</td>
<td>RUN status</td>
</tr>
<tr>
<td>Skp</td>
<td>Step signal</td>
</tr>
<tr>
<td>End</td>
<td>End signal</td>
</tr>
<tr>
<td>FIX</td>
<td>FIX</td>
</tr>
</tbody>
</table>

Table of Standby Action Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standby action only when power is applied</td>
</tr>
<tr>
<td>3</td>
<td>Standby action when power is applied and when SV in execution is changed</td>
</tr>
<tr>
<td>4</td>
<td>Control mode (without standby)</td>
</tr>
</tbody>
</table>

Table of External Control Input (DI) Codes

<table>
<thead>
<tr>
<th>DI code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Without DI</td>
</tr>
<tr>
<td>Md</td>
<td>Hold</td>
</tr>
<tr>
<td>Ld</td>
<td>Advance</td>
</tr>
<tr>
<td>SPl2</td>
<td>FIX level</td>
</tr>
<tr>
<td>SPl3</td>
<td>Starting pattern No.2 bit</td>
</tr>
<tr>
<td>SPl4</td>
<td>Starting pattern No.3 bit</td>
</tr>
</tbody>
</table>

5-15 SV limiter higher limit value setting screen

Initial value: Higher limit value of measuring range
Setting range: SH-L + 1 count ~ Higher limit of measuring range
When a wider range than the measuring range is used for target value setting, a higher limit value is set. (It prevents erroneous setting in a dangerous range.)

Note: In SV limiter setting, SV limiter lower limit value+SV limiter higher limit value and the lower limit value is given preference, that is, it is not possible to set a higher value which is less than a lower level + 1 count.

(12) Setting SV Limiter

(13) Setting External Control Input

(14) Setting Events

Table of External Control Input (DI) Codes

<table>
<thead>
<tr>
<th>DI code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Without DI</td>
</tr>
<tr>
<td>Md</td>
<td>Hold</td>
</tr>
<tr>
<td>Ld</td>
<td>Advance</td>
</tr>
<tr>
<td>SPl2</td>
<td>FIX level</td>
</tr>
<tr>
<td>SPl3</td>
<td>Starting pattern No.2 bit</td>
</tr>
<tr>
<td>SPl4</td>
<td>Starting pattern No.3 bit</td>
</tr>
</tbody>
</table>

Table of Standby Action Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standby action only when power is applied</td>
</tr>
<tr>
<td>3</td>
<td>Standby action when power is applied and when SV in execution is changed</td>
</tr>
<tr>
<td>4</td>
<td>Control mode (without standby)</td>
</tr>
</tbody>
</table>

Table of Event Type Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Type of event</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>None</td>
</tr>
<tr>
<td>Md</td>
<td>Higher limit deviation</td>
</tr>
<tr>
<td>Ld</td>
<td>Lower limit deviation</td>
</tr>
<tr>
<td>Lo</td>
<td>Outside higher/lower limit deviations</td>
</tr>
<tr>
<td>LoP</td>
<td>Within higher/lower limit deviations</td>
</tr>
<tr>
<td>HR</td>
<td>Higher limit absolute value</td>
</tr>
<tr>
<td>LR</td>
<td>Lower limit absolute value</td>
</tr>
<tr>
<td>Sd</td>
<td>Scaleover</td>
</tr>
<tr>
<td>Sc</td>
<td>Scaler</td>
</tr>
<tr>
<td>GSR</td>
<td>Guarantee soak</td>
</tr>
<tr>
<td>T1</td>
<td>Time signal 1</td>
</tr>
<tr>
<td>T2</td>
<td>Time signal 2</td>
</tr>
<tr>
<td>run</td>
<td>RUN status</td>
</tr>
<tr>
<td>Skp</td>
<td>Step signal</td>
</tr>
<tr>
<td>End</td>
<td>End signal</td>
</tr>
<tr>
<td>FIX</td>
<td>FIX</td>
</tr>
</tbody>
</table>

Table of SV Limiter lower limit value setting screen

Initial value: Lower limit value of measuring range
Setting range: Lower limit value of measuring range ~ Higher limit –1 count
When a narrower range than the measuring range is used for target value setting, a lower limit value is set. (It prevents erroneous setting in a dangerous range.)

Table of SV Limiter higher limit value setting screen

Initial value: Higher limit value of measuring range
Setting range: ~ + 1 count ~ Higher limit of measuring range
When a wider range than the measuring range is used for target value setting, a higher limit value is set. (It prevents erroneous setting in a dangerous range.)

Note: In SV limiter setting, SV limiter lower limit value+SV limiter higher limit value and the lower limit value is given preference, that is, it is not possible to set a higher value which is less than a lower level + 1 count.

Table of Standby Action Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standby action only when power is applied</td>
</tr>
<tr>
<td>3</td>
<td>Standby action when power is applied and when SV in execution is changed</td>
</tr>
<tr>
<td>4</td>
<td>Control mode (without standby)</td>
</tr>
</tbody>
</table>

Table of External Control Input (DI) Codes

<table>
<thead>
<tr>
<th>DI code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Without DI</td>
</tr>
<tr>
<td>Md</td>
<td>Hold</td>
</tr>
<tr>
<td>Ld</td>
<td>Advance</td>
</tr>
<tr>
<td>SPl2</td>
<td>FIX level</td>
</tr>
<tr>
<td>SPl3</td>
<td>Starting pattern No.2 bit</td>
</tr>
<tr>
<td>SPl4</td>
<td>Starting pattern No.3 bit</td>
</tr>
</tbody>
</table>

Table of Standby Action Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standby action only when power is applied</td>
</tr>
<tr>
<td>3</td>
<td>Standby action when power is applied and when SV in execution is changed</td>
</tr>
<tr>
<td>4</td>
<td>Control mode (without standby)</td>
</tr>
</tbody>
</table>

Table of Event Type Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Type of event</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>None</td>
</tr>
<tr>
<td>Md</td>
<td>Higher limit deviation</td>
</tr>
<tr>
<td>Ld</td>
<td>Lower limit deviation</td>
</tr>
<tr>
<td>Lo</td>
<td>Outside higher/lower limit deviations</td>
</tr>
<tr>
<td>LoP</td>
<td>Within higher/lower limit deviations</td>
</tr>
<tr>
<td>HR</td>
<td>Higher limit absolute value</td>
</tr>
<tr>
<td>LR</td>
<td>Lower limit absolute value</td>
</tr>
<tr>
<td>Sd</td>
<td>Scaleover</td>
</tr>
<tr>
<td>Sc</td>
<td>Scaler</td>
</tr>
<tr>
<td>GSR</td>
<td>Guarantee soak</td>
</tr>
<tr>
<td>T1</td>
<td>Time signal 1</td>
</tr>
<tr>
<td>T2</td>
<td>Time signal 2</td>
</tr>
<tr>
<td>run</td>
<td>RUN status</td>
</tr>
<tr>
<td>Skp</td>
<td>Step signal</td>
</tr>
<tr>
<td>End</td>
<td>End signal</td>
</tr>
<tr>
<td>FIX</td>
<td>FIX</td>
</tr>
</tbody>
</table>

Table of SV Limiter lower limit value setting screen

Initial value: Lower limit value of measuring range
Setting range: Lower limit value of measuring range ~ Higher limit –1 count
When a narrower range than the measuring range is used for target value setting, a lower limit value is set. (It prevents erroneous setting in a dangerous range.)

Table of SV Limiter higher limit value setting screen

Initial value: Higher limit value of measuring range
Setting range: ~ + 1 count ~ Higher limit of measuring range
When a wider range than the measuring range is used for target value setting, a higher limit value is set. (It prevents erroneous setting in a dangerous range.)

Note: In SV limiter setting, SV limiter lower limit value+SV limiter higher limit value and the lower limit value is given preference, that is, it is not possible to set a higher value which is less than a lower level + 1 count.

Table of Standby Action Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standby action only when power is applied</td>
</tr>
<tr>
<td>3</td>
<td>Standby action when power is applied and when SV in execution is changed</td>
</tr>
<tr>
<td>4</td>
<td>Control mode (without standby)</td>
</tr>
</tbody>
</table>

Table of SV Limiter lower limit value setting screen

Initial value: Lower limit value of measuring range
Setting range: Lower limit value of measuring range ~ Higher limit –1 count
When a narrower range than the measuring range is used for target value setting, a lower limit value is set. (It prevents erroneous setting in a dangerous range.)

Table of SV Limiter higher limit value setting screen

Initial value: Higher limit value of measuring range
Setting range: ~ + 1 count ~ Higher limit of measuring range
When a wider range than the measuring range is used for target value setting, a higher limit value is set. (It prevents erroneous setting in a dangerous range.)

Note: In SV limiter setting, SV limiter lower limit value+SV limiter higher limit value and the lower limit value is given preference, that is, it is not possible to set a higher value which is less than a lower level + 1 count.
5-24 Event 2 (EV2) standby action code setting screen

- **Initial value:** 1
- **Setting range:** 1 ~ 4
- The same as the 5-21 screen except EV1 changed to EV2.

5-25 Event 3 (EV3) type setting screen

- **Initial value:** RUN
- **Setting range:** The same as the 5-19 screen except EV1 changed to EV3.

5-26 Event 3 (EV3) hysteresis setting screen

- **Initial value:** 5
- **Setting range:** 1 ~ 999 units
- The same as the 5-21 screen except EV1 changed to EV3.

5-27 Event 3 (EV3) standby action code setting screen

- **Initial value:** 1
- **Setting range:** 1 ~ 4
- The same as the 5-21 screen except EV1 changed to EV3.

5-28 Status output 1 (DO1) action code setting screen

- **Initial value:** NON
- **Setting range:** The same as the 5-28 screen except DO1 changed to DO2.

5-29 Status output 2 (DO2) action code setting screen

- **Initial value:** NON
- **Setting range:** The same as the 5-28 screen except DO1 changed to DO2.

5-30 Status output 3 (DO3) action code setting screen

- **Initial value:** NON
- **Setting range:** The same as the 5-28 screen except DO1 changed to DO3.

Table of Status Output Action Type Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON</td>
<td>None</td>
</tr>
<tr>
<td>SDO</td>
<td>Scaleover, Hold</td>
</tr>
<tr>
<td>Hold</td>
<td></td>
</tr>
<tr>
<td>GRP</td>
<td>Guarantee soak</td>
</tr>
<tr>
<td>EAS1</td>
<td>Time signal 1</td>
</tr>
<tr>
<td>EAS2</td>
<td>Time signal 2</td>
</tr>
<tr>
<td>RUN</td>
<td>RUN status</td>
</tr>
<tr>
<td>STP</td>
<td>Step signal</td>
</tr>
<tr>
<td>END</td>
<td>End signal</td>
</tr>
<tr>
<td>FIX</td>
<td></td>
</tr>
</tbody>
</table>

5-31 Status output 4 (DO4) action code setting screen

- **Initial value:** NON
- **Setting range:** The same as the 5-28 screen except DO1 changed to DO4.

5-32 Analog output type setting screen

- **Initial value:** PV
- **Setting range:** An item intended to be output as an analog signal is selected from three items: Measured value (PV), target set value (SV) and control output (OUT).

5-33 Analog output scaling lower limit setting screen

- **Initial value:** The lower limit value of setting range for PV and SV, and 0.0 for OUT
- **Setting range:** Within measuring range when PV or SV is selected and 0.0 ~ 100.0% when OUT is selected.

5-34 Analog output scaling higher limit setting screen

- **Initial value:** The higher limit value of setting range for PV and SV, and 100.0% for OUT
- **Setting range:** Within measuring range when PV or SV is selected and 0.0 ~ 100.0% when OUT is selected.

Inversed scaling of Ao_L>Ao_H is also possible.

(15) Setting Status Output (DO)

(16) Setting Analog Output

(17) Setting Communication

Note: For communication, refer to the Communication Interface Instruction Manual provided separately.

5-35 Communication mode setting screen

- **Initial value:** LOC
- **Setting range:** Only a change from Com to Loc is possible by operating keys. Communication is enabled in the mode displayed on the bottom.

5-36 Communication address setting screen

- **Initial value:** 1
- **Setting range:** 1 ~ 255
- A machine number is set in case two or more controllers are connected through communication.
5-37 Communication speed setting screen

- Initial value: 1200
- Setting range: 1200, 2400, 4800, 9600, 19200 bps
- The speed of communication is set.

Note 1: Because of a limited number of digits, 19200 bps is displayed as 19200.

Note 2: Special keys on the communication speed screen:
- To change the speed of communication, the speed that is displayed to the host must be set.

5-38 Communication data format setting screen

- Initial value: 7E (7 bit, even parity, stop bit 1)
- Setting range: 8 bits, non-parity, stop bit 1
- A communication data format is set.

5-39 Start character setting screen

- Initial value: C0 (STX), R1 (RST)
- Setting range: (STX), (@)
- Which of STX and @ is used as the start character of communication is set.

5-40 BCC operation type setting screen

- Initial value: 1
- Setting range: 1 ~ 4
- An operation type for error detection BCC check is selected from the following table:

<table>
<thead>
<tr>
<th>Type of Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Add operation from start character to text end character</td>
</tr>
<tr>
<td>2</td>
<td>2’s complement after add operation from start character to text end character</td>
</tr>
<tr>
<td>3</td>
<td>Exclusive OR operation from 2nd character to text end character</td>
</tr>
<tr>
<td>4</td>
<td>Without BCC operation</td>
</tr>
</tbody>
</table>

5-41 Communication delay time setting screen

- Initial value: 20
- Setting range: 1 ~ 100
- Minimum delay time lag from receiving a communication command to transmission is set. Minimum delay time = Set value × 0.512 msec

5-42 Communication memory mode setting screen

- Initial value: EEP, EEPROM, RAM, EAR, E
- Setting range: Which of EEPROM and RAM data is written in through communication is set.

<table>
<thead>
<tr>
<th>Type</th>
<th>Writing Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEP</td>
<td>All to be written in EEPROM</td>
</tr>
<tr>
<td>RAM</td>
<td>All to be written in RAM</td>
</tr>
<tr>
<td>EAR</td>
<td>EEP, SB, and EEPROM to be written in RAM and others in EEPROM</td>
</tr>
</tbody>
</table>

* Note on the RAM mode selected as communication mode: Since all are written in RAM, setting inconsistency may arise in some case. For details, refer to "6-17. Notes on RAM as Communication Memory Mode."

5-43 Keylock setting screen

- Initial value: OFF
- Setting range: OFF, 1, 2, 3
- Items which should not be changed are locked. Data are unable to be changed on locked screens. Select OFF to release the lock.

5-44 Measuring Range Codes Table

Select a measuring range from the following table.

Note: A change of a measuring range code will initialize all data related to the measuring range.

<table>
<thead>
<tr>
<th>Input type</th>
<th>Code</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple</td>
<td>B , T</td>
<td>0 ~ 1800</td>
</tr>
<tr>
<td></td>
<td>R , S</td>
<td>0 ~ 1700</td>
</tr>
<tr>
<td></td>
<td>K , E</td>
<td>0 ~ 800</td>
</tr>
<tr>
<td></td>
<td>N , J</td>
<td>0 ~ 700</td>
</tr>
<tr>
<td></td>
<td>L , P</td>
<td>0 ~ 600</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>0 ~ 400</td>
</tr>
<tr>
<td>R.T.D.</td>
<td>Pt</td>
<td>0 ~ 200</td>
</tr>
<tr>
<td></td>
<td>J P</td>
<td>0 ~ 100</td>
</tr>
<tr>
<td></td>
<td>50mA</td>
<td>0 ~ 50</td>
</tr>
<tr>
<td>mA</td>
<td>±10mV</td>
<td>0 ~ 10</td>
</tr>
<tr>
<td></td>
<td>±50mV</td>
<td>0 ~ 50</td>
</tr>
<tr>
<td></td>
<td>±100mV</td>
<td>0 ~ 100</td>
</tr>
<tr>
<td></td>
<td>±500mV</td>
<td>0 ~ 500</td>
</tr>
<tr>
<td></td>
<td>±1V</td>
<td>0 ~ 1</td>
</tr>
<tr>
<td></td>
<td>±2V</td>
<td>0 ~ 2</td>
</tr>
<tr>
<td></td>
<td>±5V</td>
<td>0 ~ 5</td>
</tr>
<tr>
<td></td>
<td>±10V</td>
<td>0 ~ 10</td>
</tr>
<tr>
<td></td>
<td>±20mA</td>
<td>0 ~ 20mA</td>
</tr>
<tr>
<td></td>
<td>±4mA</td>
<td>0 ~ 4mA</td>
</tr>
</tbody>
</table>

R.T.D. : Pt100, JIS/IEC, Pt100: Former JIS.

* Thermocouple: R: Accuracy guaranteed not applicable to 4000°C (7200°F) and below.
* Thermocouple: R, T, U: Accuracy of whose readings are below −100°C is ±0.5% FS.
* Thermocouple: Pt100: Platinum
* Thermocouple: Wres 26: A product of Flexline
* Thermocouple: U, L: DIN 47516

* When not designated, factory-set measuring range is K thermocouple (0.0 ~ 800.0°C).
6. Operation and Functions

6-1. Using FIX Mode

FIX: Adjustment function without using the program function.

1. Pressing the or key on the 3-1 FIX ON/OFF screen turns OFF shown on the target value (SV) display to ON and the decimal point of the rightmost digit blinks. Then, press the key, and the decimal point stops blinking to register the selection. (When OFF is set for FIX on this screen, the program mode turns ON.)

2. Pressing the key calls the next setting screen. Set a necessary item, if any.

3. When the display returns to the basic screen upon completion of setting, is shown on the pattern number display and the FIX mode is ON.

3-1 FIX ON/OFF screen

<table>
<thead>
<tr>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIX</td>
<td>FIX</td>
</tr>
</tbody>
</table>

Decimal point blinks. Decimal point stops blinking.

3-2 screen

6-2. Setting Target Value (SV) (FIX Mode)

1. Setting on the basic screen

When the or the key is pressed on the 0-0 basic screen, the decimal point of the rightmost digit blinks and the numerical value changes. The value keeps changing while either of the keys is being pressed. Once an intended value is reached, press the key to register it. The registration of the data stops the blink of the decimal point.

2. Setting on the SV setting screen

When the or the key is pressed on the 3-2 FIX SV setting screen, the decimal point of the rightmost digit blinks and the numerical value changes. The value keeps changing while either of the keys is being pressed. Once an intended value is reached, press the key to register it. The registration of the data stops the blink of the decimal point.

* In the program mode, SV value is unable to be changed on the basic screen.

* No target value can be changed while auto tuning (AT) is in execution. It should be set after releasing AT.

Example: Setting target value at 100°C

0-0 Basic screen

<table>
<thead>
<tr>
<th>2.50</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Press key continuously.

Press key intermittently.

Press key.

3-2 FIX SV setting screen

<table>
<thead>
<tr>
<th>2.50</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Press key continuously.

Press key intermittently.

Press key.

6-3. Setting Output Manually

For switching between auto and manual, press the key continuously for 3 seconds (in the state of RUN) on the output monitoring screen.

During manual output, the MAN lamp lights and it goes out when automatic output begins.

To set a target value, press the or key on the output monitoring screen. When the target value is reached, the setting completes. To release it, press the key again for 3 seconds continuously, and automatic output is resumed.

* Changing to manual output is not possible while auto tuning is in execution.

1. 100% output is shown as and the decimal point of blinks.

2. When OFF is set for proportional band (P) in the case of contact output or SSR drive voltage output, the value of output is either 0.0% or 100.0%.

3. When OFF is set for proportional band (P) in the case of voltage output or current output, the output value becomes the lower or higher limit value of a set output limiter.

0-1 Output monitoring screen

<table>
<thead>
<tr>
<th>2.50</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Press key for 3 seconds.

Press key for 3 seconds.

Press key for 3 seconds.

MAN blinks.

MAN blinks.

MAN goes out.

* Supplementary Explanation of Monitoring Screen

The output monitoring screen (OUT) and automatic output/manual output:

1) When auto is changed to manual, output is in balanceless action and an output value immediately before the change is displayed.

When manual is changed to auto, output is in bumpless action if it is bumpless. If it is outside the proportional band, however, the output is not in bumpless action.

2) In case power supply was turned OFF and power is applied again, control output is in the mode (either manual or auto) which was ON at the time of interruption of power supply.

NOTE: Even in the manual mode, it is possible to call another screen but it should be noted that control output is in the manual state. Blinking of the MAN action LED shows that the manual mode is ON.
6.4. Auto Tuning (AT)

This is the function to automatically calculate and set P.I.D. values, i.e., parameters of PID control. The time required for calculation depends on the details of control.

① Execution of AT

Pressing the key on the AT execution setting screen changes OFF shown on the target set value (SV) display to ON and the decimal point on the rightmost digit blinks. Upon pressing the key, the decimal point stops blinking and AT action begins. When the target set value stays in the inclined portions (portions indicated by the arrows of the action display), AT is in the state of standby (the AT lamp lights), and AT is executed while the target set value stays in the level portion (the AT lamp blinks).

While AT is in execution, the ON/OFF action of output is repeated several times in accordance with rise and fall of the measured value from the target value as the border and PID values are stored in an internal memory. Immediately when they are stored, control using these PID values begins and AT action ends. Then, the target set value display shows OFF and the AT lamp goes out. (In case there is AT still to be executed, it is put in the state of standby.)

② Release of AT in the Middle

To release AT in the middle, select OFF on the AT execution setting screen by the use of key and press the key.

③ Reasons Why AT Does Not Function

1) Control output is in manual mode.
2) The proportional band (P) of control output is OFF.
3) PV value (measured value) is in the state of scaleover.
4) On the keylock screen, No. 3 is selected. (AT is executed when it is turned ON before keylock setting.)
5) AT is suspended (RST).

If the following conditions arise while AT is in execution, AT is released:
1) Output is at 0% or 100% continuously for 200 minutes.
2) PV value gets scaleover.
3) RST input is received.
4) AT is terminated by key operation or through communication.
5) AT of PID No. 1 through No. 6 (No. 3 in the case of zone) has completed.

6-5. PID Action

① P (Proportional action)

The ratio (%) of a range in which control output changes relatively to a measuring range is set. Output increases or decreases in proportion to difference between PV value and SV value. The narrower the proportional band, the larger a change in output, i.e., the stronger the proportional action. Nonetheless, an excessively narrow proportional band causes control to vibrate, resulting in control similar to ON-OFF action.

② I (Integral time)

This is the function to correct an offset (constant deviation) produced in proportional band. The longer the integral time, the weaker the correcting action, that is, reducing the integral time strengthens the correcting action but it may cause undulation of control results due to integral hunting.

③ D (Derivative time)

A change in control output is estimated and overshooting is suppressed to improve the stability of control. A longer derivative time strengthens derivative action but it may cause control results to vibrate.

6-6. Manual Reset

In PID action, an offset is corrected automatically by I, i.e., integration. When OFF is set for I, however, this correction is not carried out and so output is increased or decreased manually for correction. This method is called manual reset.

6-7. Output Lower Limit and Higher Limit Setting Limiters

① Output limiter means to limit a minimum or maximum value of control output and this function is effective in securing the lowest temperature or suppressing overshooting of control.

② Output limiter gives preference to a lower limit value. When a larger lower limit value than a higher limit value is set, the higher limit value is forced to become the lower limit value +0.1%. In other words, it is not possible to set a higher limit value which is less than a lower limit +0.1%.

6-8. Proportional Cycle Time

It can be set within a range from 1 to 120 seconds in the case of contact output or SSR drive voltage output. Proportional cycle time is ON time + OFF time within a proportional band.
6-9. Zone PID

The PID control of this instrument allows you to select and set the zone method. In the zone PID control, a measuring range is divided into three types: maximum, and control is carried out with PID No. which is selected automatically from an SV value set for each step. Its basic action is: PID No. changes when control output becomes larger than an SP value or smaller than a zone hysteresis. An example of its action is diagramed below.

Zone 1 SP = 100°C	No.1
Zone 2 SP = 200°C	No.2
Zone 3 SP = 300°C	No.3
Zone hysteresis: 30°C	

When above diagram shows SV as:
- Below 200°C → Action with PID No. 1
- 200°C ~ 300°C → Action with PID No. 2
- Above 300°C → Action with PID No. 3

When the setting of zone SP is changed as follows:
- Zone 3 SP: 100°C → Below 200°C → Action with PID No. 3
- Zone 1 SP: 200°C → 200°C ~ 300°C → Action with PID No. 1
- Zone 2 SP: 300°C → Above 300°C → Action with PID No. 2

* When the same zone SP value is set, the lowest number is used preferentially.
* Even when a zone SP value in action is changed within a zone hysteresis, PID No. is not changed as long as output remains within the hysteresis.

6-10. External Control Input (DI)

The instrument has four DIs. DI is caused to function when any other item than non is set on the setting screen and external terminals are shorted. Action caused by each setting is described below:

- **RUN/RST**
 - Switching between RUN and RST. As this is assigned to DI1 fixedly, the setting is unable to be changed. Being edge input, RUN and RST are switched by shorting across terminals 1 and 2.

- **ADV**
 - As on the 0-6 ADV execution screen, when executed, the present step comes to an end and is forced to proceed to the next step. Being edge input, ADV is executed every shorting across terminals.

- **HLD**
 - As on the 0-5 HLD execution screen, when executed, the present step time is temporarily suspended and SV is fixed. Being level input, shorting across terminal puts HLD in execution and opening releases it. A change in step time, step SV, time signal ON/OFF time, etc. does not take effect until HLD is released.

- **FIX**
 - As on the 3-1 FIX mode ON/OFF setting screen, when executed, the FIX mode turns ON. Being level input, shorting across terminals turns the FIX mode ON and opening releases it.

- **SPT3**
 - A pattern No. at the start of program action is selected by 3 bits of DI2–DI4.

- **SPT2**
 - A pattern No. at the start of program action is selected by 2 bits of DI3 and DI4. Being level input, shorting across terminals produces "1" and opening "0". Since the time for removing chattering of level input is 125msec, edge input action need to remain ON for 125msec or longer. If a number exceeding the number of patterns is input, a maximum number of patterns allowed to be set can be set. For example: Where the number of patterns = 2 and DI input is 011, the number of start pattern is 2.
6-11. Events

① Deviation Alarm
An alarm action point is set by a deviation of measured value (PV) from target set value (SV).
For instance, to activate an alarm when measured value (PV) reaches 30°C against SV value at 20°C, higher limit
deviation alarm is set at 10°C. To activate alarm when measured value (PV) lowers below 30°C in the case of an SV value
at 100°C, lower limit deviation alarm is set at –70°C. This function is convenient for an alarm action point to follow
deviations from target set value. The set range is –1999 ~ 2000 units.

② Absolute Value Alarm
An alarm point is set by an absolute value.
For instance, to activate an alarm when measured value exceeds 50°C, higher absolute value alarm is set at 50°C. To
activate an alarm when measured value lowers below 20°C, lower absolute value alarm is set at 20°C. Setting of higher or
lower absolute value alarm is possible as long as it is within the measuring range.

③ Standby Action
In case 2 or 3 is set for event standby action, there is no event output upon applying power (or changing target set value)
even when measured value is within an event action area (an ON area). Event is output when it reaches the event action
area again after it gets out of the event action area (gets in an OFF area).

④ Non-standby Action
In case event standby action is set for 1 and 4, an alarm is output when measured value gets in an action area upon
applying power (or changing target set value).

⑤ Control Mode (4 is set for standby action)
No event is output at the time of scaleover. The same applies to event standby.

6-12. Setting Event Standby Action
On 5-21 Event 1 standby action code setting screen
① When event output is used as an alarm, select from 1, 2 and 3 of the standby action code table.
② When event output is used for control, set 4 (control mode). In case 4 is selected, however, event output turns OFF at the
time of input abnormality.
③ When 2 is selected, standby action functions only when power is applied.
④ When 3 is selected, standby action functions when power is applied and when SV in execution is changed.
⑤ When changed to 1 or 4 while standby action is going on, the standby action is released immediately.
⑥ Even when 2 or 3 is selected as standby action, it has no effect if PV value is outside the ON area of event action when
power is applied or SV is changed.

6-13. Diagrams of Alarm Actions Selectable as Event
Diagrams of alarm actions to be selected for event 1~3 are shown below:

6-14. Event and Status Output Actions
The following nine items can be set for status output of “5-28, 5-29, 5-30 and 5-31” as well as events:

⑥ Scaleover
: To be output when measured value (PV) gets 10% above or below higher/lower limits of measuring
range. (See the diagram on the right.)

⑥ Hold
: To be output while HLD is set on DI input and 0-5 HLD execution setting in communication
in the PROG mode.

⑥ Guarantee soak
: To be output while the state of guarantee remains in the PROG mode.

⑥ Time signal 1
: To be output in the ON/OFF condition set in the time signal 1 setting (1-3, 1-4, 1-5 and 1-6) in the
PROG mode. For details, see 6-15.

⑥ Time signal 2
: To be output in the ON/OFF condition set in the time signal 2 setting (1-7, 1-8, 1-9 and 1-10) in the
PROG mode. For details, see 6-15.

⑥ RUN status
: To be output while RUN action is in execution.

⑥ Step signal
: To be output for one second when a step proceeds to another in the PROG mode.

⑥ End signal
: To be output for one second when the last step ends in the PROG mode.

⑥ FIX
: To be output while RUN action is in execution in the FIX mode.
6-15. Time Signal

Time signal: Event output and status output can be produced for a designated period of time. Two points per pattern are equipped and ON step, OFF step, ON time and OFF time can be set individually.

① Time signal functions under the following conditions:
1) OR is set as status output of event output.
2) OFF is not selected in Time signal ON step setting.
3) ON time is set within the end step.
4) In the total length of time elapsed since the start of program, ON time ≤ OFF time.
 • In the case of ON step = OFF step and ON time = OFF time, time signal turns ON for one second.
 • In the case of ON step < OFF step and ON time = OFF time in the total length of time elapsed since the start of program, time signal turns ON for one second.

(Example of setting: 1 step 10 minutes, ON step = 1, ON time 15 minutes, OFF step = 2 and OFF time 5 minutes)

② In the case of ON step = OFF step and ON time = OFF time, the change is not reflected until HLD is released.

③ Reasons why time signal does not function (always OFF) (Time signal does not function in the following cases):
1) OR is not set as status output of event output (including the case where these options are not added).
2) OFF is selected as Time signal ON step setting.
3) ON time exceeds the end step.
4) In the total length of time elapsed since the start of program, ON time > OFF time is set.

④ Other Matters related to Setting
1) The time of time signal is stopped during HLD and guarantee soak.
2) In case ON step and ON time are set and OFF step is OFF, once time signal turns ON, the end step also turns ON.
 (When one or more program executions are set, both remain ON until they are completed.)
3) In case OFF time is set beyond the end step, the end step is forcibly turned OFF. When ON step is the first step and 00:00 is set for ON time, it does not turn OFF.
4) In case ON time equals step time, it turns ON at the start of the next step.

Other examples of setting
ON time > end step (time signal not effective)
ON step = OFF only ON step is effective (remains ON until the program completes.)
OFF time > end step (forcibly turned OFF at the end step.)

⑤ When TS is assigned to a step of which the step time is 0, the action is the same as TS is assigned to the next step.
6-16. Status (DO) Output

This instrument has four status output as optional function (open collector output) points.

- Terminal Nos. 27~30
 - 24V DC (maximum load 20mA),
 - ON time saturation voltage 1.2V

- Terminal No. 26
 - Output is produced across terminal No.16 and the respective terminal Nos.

6-17. Auto Return Function

Should there be no key operation for 3 minutes on each screen except the monitoring screens (adjustment output, remaining time of step, the number of pattern executions, PID No.), the display returns automatically to the 0-0 basic screen of screen group 0 (auto return).

6-18. Notes on RAM as Communication Memory Mode

In case RAM is selected on the 5-42 communication memory mode, all set data are written in RAM. Care should be taken as this causes nonconformity of set data in a pattern like the following:

On the assumption that input range is 05 (K 0.0~800.0˚C),
1. An event code is changed from higher limit deviation value to higher limit absolute value through communication (this change is recorded in RAM).
2. Communication mode is changed from COM to LOC.
3. Event action point setting is changed from 800.0 to 700.0 by key operation. (Being in LOC mode, this change is recorded in EEPROM).
4. Power supply is interrupted and power is applied again.
5. The event code recorded in RAM is cleared and higher limit deviation value is read from EEPROM.
6. Since the event action point set as 700.0 has been written in EEPROM, 700.0 is read.
7. Consequently, although the setting range of higher limit deviation value is actually –1999~2000 units, an impossible value of 7000 units is set.
 To ensure proper use of the instrument, correct data must be set again.

7. Error Codes, Causes and Remedies

<table>
<thead>
<tr>
<th>Screen display</th>
<th>Problem</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| HHHH (HHHH) | Higher limit side scaleover | ① Break of thermocouple input wiring
② Break of R.T.D. input A wiring
③ Input measured value exceeded higher limit of measuring range by more than 10%. | ① Check thermocouple input wiring. If wiring has no problem, check and replace thermocouple.
② Check wire connection to R.T.D. terminal A. If wiring has no problem, replace R.T.D.
③ For voltage or current input, check the transmitting unit of measured values. Check if set code of measuring range is the same as that of input signal. |
| LLLL (LLLL) | Lower limit side scaleover | ① Problem with wiring connection for input signal
② Input measured value fell from lower limit of measuring range by 10%
③ Nonconformity of input range with input signal | ① Check wire connection for input signal.
② Check wiring of inverted polarity or break of wiring for measured value input.
③ Check input range and input signal. |
| b--- (b---) | Break of R.T.D. input wiring | ① Break of B
② More than one break of A, B and B | Check R.T.D. input terminals A, A and B for breaks. If wiring has no problem, check and replace R.T.D. |
| CJHH (CJHH) | Higher limit side scaleover of thermocouple input | Ambient temperature of FP93 has exceeded 80°C. | ① Reduce ambient temperature to the level provided in the environment conditions.
② In case ambient temperature has not exceeded 80°C, examine the instrument. |
| CJLL (CJLL) | Lower limit side scaleover of thermocouple input | Ambient temperature of instrument has fallen to –20°C or lower. | ① Raise ambient temperature to the level provided in the environment conditions.
② In case ambient temperature has not fallen to –20°C, examine the instrument. |

Note: When you find something wrong with the instrument, please re-read the instruction manual and examine the instrument again. For any problem with the product or further information, please contact our sales agent.
8. Record of Parameter Setting
(For convenience sake, recording set values and selected items is recommended.) The initial values are of Code 05 (K).

<table>
<thead>
<tr>
<th>Screen No.</th>
<th>Parameter (Item)/Screen</th>
<th>Initial value</th>
<th>Setting/Selection</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0</td>
<td>Basic screen</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>Output monitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>Step remaining time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>Pattern execution number monitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>PID No. monitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>HLD execution setting</td>
<td>Hld. (Hld)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>0-6</td>
<td>ADV execution setting</td>
<td>AdV. (AdV)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>0-7</td>
<td>AT execution setting</td>
<td>At. (At)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>1-0</td>
<td>Initial screen</td>
<td>ProG. (ProG)</td>
<td>SEF</td>
<td></td>
</tr>
<tr>
<td>1-1</td>
<td>Start SV</td>
<td>Sv. (Sv)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>End step</td>
<td>EstP. (EstP)</td>
<td>I0</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>TS1 ON step assignment</td>
<td>Ts1O. (Ts1O)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>TS1 ON time</td>
<td>Ts1T. (Ts1T)</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>TS1 OFF step assignment</td>
<td>Ts1F. (Ts1F)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>1-6</td>
<td>TS1 OFF time</td>
<td>Ts1F. (Ts1F)</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>1-7</td>
<td>TS2 ON step assignment</td>
<td>Ts2O. (Ts2O)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>1-8</td>
<td>TS2 ON time</td>
<td>Ts2O. (Ts2O)</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>1-9</td>
<td>TS2 OFF step assignment</td>
<td>Ts2F. (Ts2F)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>TS2 OFF time</td>
<td>Ts2F. (Ts2F)</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>1-11</td>
<td>EV1 level value</td>
<td>E1**. (E1**)</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>1-12</td>
<td>EV2 level value</td>
<td>E2**. (E2**)</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>1-13</td>
<td>EV3 level value</td>
<td>E3**. (E3**)</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>1-14</td>
<td>Pattern execution number</td>
<td>Pcnt. (Pcnt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>PV start</td>
<td>Pvs. (Pvs)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>1-16</td>
<td>Guarantee soak zone</td>
<td>GuaZ. (GuaZ)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>Step SV</td>
<td>Sv. (Sv)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-2</td>
<td>Step time</td>
<td>Tim. (Tim)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>PID No.</td>
<td>Pid. (Pid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-0</td>
<td>Initial screen</td>
<td>Fix. (Fix)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td>FIX ON/OFF</td>
<td>Fix. (Fix)</td>
<td>ofF</td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td>FIX SV setting</td>
<td>Fsv. (Fsv)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>FIX PID No. setting</td>
<td>Fpid. (Fpid)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>EV1 level value</td>
<td>E1**. (E1**)</td>
<td>Hld: 2000unit Ld.: -1999unit Id: 2000unit HA: Higher limit of measuring range LA: Lower limit of measuring range</td>
<td></td>
</tr>
<tr>
<td>3-6</td>
<td>EV3 level value</td>
<td>E3**. (E3**)</td>
<td>Hld: 2000unit Ld.: -1999unit Id: 2000unit HA: Higher limit of measuring range LA: Lower limit of measuring range</td>
<td></td>
</tr>
</tbody>
</table>

<p>| PID No. 1 | | | | |
| 4-0 | Initial screen | Pid. (Pid) | 0 | |
| 4-1 | PID P | P. (P) | 30 | |
| 4-2 | PID hysteresis | dF. (dF) | 200unit | |
| 4-3 | PID I | I. (I) | 120 | |
| 4-4 | PID D | d. (d) | 30 | |
| 4-5 | PID MR | Mr. (Mr) | 00 | |
| 4-6 | PID SF | Sf. (Sf) | 040 | |
| 4-7 | PID lower limit | o_L. (o_L) | 00 | |
| 4-8 | PID higher limit | a_H. (a_H) | 1000 | |</p>
<table>
<thead>
<tr>
<th>Screen No.</th>
<th>Parameter (Item)/Screen</th>
<th>Initial value</th>
<th>Setting/Selection</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID No. 2</td>
<td>4-0 Initial screen</td>
<td>Pid. (P)</td>
<td>SELE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-1 PID P</td>
<td>P</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-2 PID hysteresis</td>
<td>dF. (dF)</td>
<td>20unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-3 PID I</td>
<td>l. (l)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-4 PID D</td>
<td>d. (d)</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-5 PID MR</td>
<td>mr. (mr.)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-6 PID SF</td>
<td>SF. (SF)</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-7 PID lower limit</td>
<td>o_L. (o_L)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-8 PID higher limit</td>
<td>o_H. (o_H)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>PID No. 3</td>
<td>4-0 Initial screen</td>
<td>Pid. (P)</td>
<td>SELE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-1 PID P</td>
<td>P</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-2 PID hysteresis</td>
<td>dF. (dF)</td>
<td>20unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-3 PID I</td>
<td>l. (l)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-4 PID D</td>
<td>d. (d)</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-5 PID MR</td>
<td>mr. (mr.)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-6 PID SF</td>
<td>SF. (SF)</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-7 PID lower limit</td>
<td>o_L. (o_L)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-8 PID higher limit</td>
<td>o_H. (o_H)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>PID No. 4</td>
<td>4-0 Initial screen</td>
<td>Pid. (P)</td>
<td>SELE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-1 PID P</td>
<td>P</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-2 PID hysteresis</td>
<td>dF. (dF)</td>
<td>20unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-3 PID I</td>
<td>l. (l)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-4 PID D</td>
<td>d. (d)</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-5 PID MR</td>
<td>mr. (mr.)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-6 PID SF</td>
<td>SF. (SF)</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-7 PID lower limit</td>
<td>o_L. (o_L)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-8 PID higher limit</td>
<td>o_H. (o_H)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>PID No. 5</td>
<td>4-0 Initial screen</td>
<td>Pid. (P)</td>
<td>SELE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-1 PID P</td>
<td>P</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-2 PID hysteresis</td>
<td>dF. (dF)</td>
<td>20unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-3 PID I</td>
<td>l. (l)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-4 PID D</td>
<td>d. (d)</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-5 PID MR</td>
<td>mr. (mr.)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-6 PID SF</td>
<td>SF. (SF)</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-7 PID lower limit</td>
<td>o_L. (o_L)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-8 PID higher limit</td>
<td>o_H. (o_H)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>PID No. 6</td>
<td>4-0 Initial screen</td>
<td>Pid. (P)</td>
<td>SELE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-1 PID P</td>
<td>P</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-2 PID hysteresis</td>
<td>dF. (dF)</td>
<td>20unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-3 PID I</td>
<td>l. (l)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-4 PID D</td>
<td>d. (d)</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-5 PID MR</td>
<td>mr. (mr.)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-6 PID SF</td>
<td>SF. (SF)</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-7 PID lower limit</td>
<td>o_L. (o_L)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-8 PID higher limit</td>
<td>o_H. (o_H)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Zone PID</td>
<td>4-10 Initial screen</td>
<td>Pid. (P)</td>
<td>SELE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-11 Zone ON/OFF</td>
<td>Zone. (Zone)</td>
<td>ON/OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-12 Zone 1 SP</td>
<td>Zone. (Zone)</td>
<td>0unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-13 Zone 2 SP</td>
<td>Zone. (Zone)</td>
<td>0unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-14 Zone 3 SP</td>
<td>Zone. (Zone)</td>
<td>0unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-15 Zone hysteresis</td>
<td>Zone. (Zone)</td>
<td>20unit</td>
<td></td>
</tr>
<tr>
<td>Screen No.</td>
<td>Parameter (Item)/Screen</td>
<td>Initial value</td>
<td>Setting/Selection</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>5-0</td>
<td>Initial screen</td>
<td>init. (SE)</td>
<td>SET</td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>Pattern No. designation</td>
<td>Ptn. (P)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5-2</td>
<td>Time designation</td>
<td>tmUn. (H)</td>
<td>HA</td>
<td></td>
</tr>
<tr>
<td>5-3</td>
<td>With/without power failure compensation</td>
<td>SAVE. (oFF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4</td>
<td>Input abnormality code</td>
<td>So. (HL)</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>5-5</td>
<td>Measuring range</td>
<td>rAnG. (DS)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td>Input unit</td>
<td>Unit. (c)</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>Input scale lower limit value</td>
<td>Sc.L. (0)</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>5-8</td>
<td>Input scale higher limit value</td>
<td>Sc.H. (1000)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5-9</td>
<td>Input scale decimal point</td>
<td>ScdP. (0)</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>PV bias</td>
<td>PV_b. (0)</td>
<td>0 unit</td>
<td></td>
</tr>
<tr>
<td>5-11</td>
<td>PV filter</td>
<td>PV_F. (0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5-12</td>
<td>Control characteristics</td>
<td>Act. (R)</td>
<td>r_R</td>
<td></td>
</tr>
<tr>
<td>5-13</td>
<td>Proportional cycle</td>
<td>o_C. (30 P)</td>
<td>30 P</td>
<td></td>
</tr>
<tr>
<td>5-14</td>
<td>Lower limit value of SV setting</td>
<td>SVC_L.</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>5-15</td>
<td>Higher limit value of SV setting</td>
<td>SVC_H.</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>5-16</td>
<td>External control input 2 code</td>
<td>d2c. (0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5-17</td>
<td>External control input 3 code</td>
<td>d3c. (0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5-18</td>
<td>External control input 4 code</td>
<td>d4c. (0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5-19</td>
<td>EV1 action type</td>
<td>E1_m. (E)</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>EV1 hysteresis</td>
<td>E1_d. (E)</td>
<td>5 unit</td>
<td></td>
</tr>
<tr>
<td>5-21</td>
<td>EV1 standby setting</td>
<td>E1_i. (E)</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>5-22</td>
<td>EV2 action type</td>
<td>E2_m. (E)</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>5-23</td>
<td>EV2 hysteresis</td>
<td>E2_d. (E)</td>
<td>5 unit</td>
<td></td>
</tr>
<tr>
<td>5-24</td>
<td>EV2 standby setting</td>
<td>E2_i. (E)</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>5-25</td>
<td>EV3 action type</td>
<td>E3_m. (E)</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>5-26</td>
<td>EV3 hysteresis</td>
<td>E3_d. (E)</td>
<td>5 unit</td>
<td></td>
</tr>
<tr>
<td>5-27</td>
<td>EV3 standby setting</td>
<td>E3_i. (E)</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>5-28</td>
<td>Status output 1 code</td>
<td>do1c. (d)</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>5-29</td>
<td>Status output 2 code</td>
<td>do2c. (d)</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>5-30</td>
<td>Status output 3 code</td>
<td>do3c. (d)</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>5-31</td>
<td>Status output 4 code</td>
<td>do4c. (d)</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>5-32</td>
<td>Analog output type</td>
<td>Ao_m. (R)</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>5-33</td>
<td>Analog output scale lower limit value</td>
<td>Ao_L.</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>5-34</td>
<td>Analog output scale higher limit value</td>
<td>Ao_H.</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>5-35</td>
<td>Communication mode</td>
<td>comm. (Loc)</td>
<td>LOC</td>
<td></td>
</tr>
<tr>
<td>5-36</td>
<td>Communication address</td>
<td>Addr. (1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5-37</td>
<td>Communication speed</td>
<td>bPS. (1200)</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>5-38</td>
<td>Communication data format</td>
<td>d4A.</td>
<td>4E i</td>
<td></td>
</tr>
<tr>
<td>5-39</td>
<td>Start character</td>
<td>SchA. (5E)</td>
<td>5E</td>
<td></td>
</tr>
<tr>
<td>5-40</td>
<td>BCC operation</td>
<td>bcc. (oFF)</td>
<td>oFF</td>
<td></td>
</tr>
<tr>
<td>5-41</td>
<td>Delay time</td>
<td>dELy. (20)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5-42</td>
<td>Communication memory mode</td>
<td>nEm.</td>
<td>EEP</td>
<td></td>
</tr>
<tr>
<td>5-43</td>
<td>Keylock</td>
<td>LockK. (oFF)</td>
<td>oFF</td>
<td></td>
</tr>
<tr>
<td>Pattern No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Start SV</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The number of steps</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1 ON step</td>
<td></td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1 ON time</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>TS1 OFF step</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>TS1 OFF time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS2 ON step</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS2 ON time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS2 OFF step</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS2 OFF time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV1 setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV2 setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV3 setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The number of pattern executions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guarantee soak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV start</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV (set value)</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>PID No. (0~6)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PID No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone PID ON/OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 1 SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 2 SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 3 SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone hysteresis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Target value function						
Higher limit of output limiter						
Lower limit of output limiter						

★ Copy these pages for your use as occasion demands.
9. Specifications

Display
- **Display means**
 - Digital display: PV Red 7 segments LED 4 digits
 - SV Green 7 segments LED 4 digits
 - PTN Green 7 segments LED 1 digit
 - STEP Green 7 segments LED 2 digits
- **Status display**
 - OUT Green LED lamp indication
 - EV1~3 (3 points) Orange LED lamp indication
 - AT Green LED lamp indication
 - MAN Green LED lamp indication
 - COM Green LED lamp indication
 - DO1~4 (4 points) Green LED lamp indication
 - GUA Green LED lamp indication
 - RUN Green LED lamp indication (blinks during FIX)
 - HLD Green LED lamp indication
 - "ascend" Green LED lamp indication
 - "level" Green LED lamp indication
 - "descend" Green LED lamp indication
- **Display accuracy**:
 - ±(0.3%FS + 1 digit), with restriction depending on measuring range, CJ error excluded.
- **Display accuracy maintaining range**:
 - 23˚C±5˚C
- **Display resolution**:
 - Differs by measuring range (0.001, 0.01, 0.1 and 1)
- **Measured value display range**:
 - –10%~110% of measuring range
 - (–210~680˚C for Pt –200~600˚C range)
- **Display updating cycle**:
 - 0.25 second
- **Input scaling**:
 - Possible during linear input (current and voltage)
 - (–1999~9999, span 10~5000, decimal point position variable)

Setting
- **Local Setting**
 - Operated by 8 keys (, , , , , , ,) on the front panel
- **SV setting range**:
 - Same as measuring range (within setting limiter)
- **Setting limiter**:
 - Individual setting for higher and lower limits, any value is selectable within measuring range
 - (Lower limit < Higher limit)
- **Keylock**:
 - OFF, 1~3 (4 levels)
- **Setting of unit**:
 - ‘˚C or ‘˚F selectable for sensor input

Input
- **Type of input**:
 - Selectable from multiple (TC, Pt, mV, V) and current (mA)
- **Thermocouple**
 - Input impedance 500 kΩ minimum
 - External resistance tolerance 100 Ω maximum
 - Influence of lead wire tolerance 1.2µV/10 Ω
 - Burnout function standard up scale
 - Cold junction compensation accuracy
 - Within the accuracy maintaining range ±1˚C
 - Ambient temperature 5~45˚C ±2˚C

 *1 : For K, T and U thermocouples with indication values below –100˚C, ±0.7% FS
 *2 : Accuracy guarantee not applicable to B thermocouple below 400˚C (752˚F).

 R.T.D.
 - Normal current: 0.25 mA
 - Lead wire tolerance 5 Ω maximum/wire (3 lead wires should have the same resistance.)
 - Influence of lead wire tolerance (error in temperature)
 - 0.3˚C maximum in the case of 5 Ω/wire
 - 0.7˚C maximum in the case of 10 Ω/wire
 - 1.6˚C maximum in the case of 20 Ω/wire

- **Voltage**
 - Input impedance 500 kΩ minimum
- **Current**
 - mA to be taken care of by external resistor 250 Ω
- **Sampling cycle**
 - 0.25 second
- **PV filter**
 - 0~100 seconds
- **PV bias**
 - –1999~2000 units
- **Isolation**
 - Not insulated from system and DI but insulated from others

Control
- **Control mode**
 - Expert PID control with auto tuning function
 - RA (heating)/DA (cooling) action
- **Type of control output/rating**
 - Contact 1c 240V AC 2.5A(resistive load) 1.0A (inductive load)
 - SSR drive voltage12V±1.5V DC (Maximum load current 30mA)
 - Current 4~20mA (Maximum load resistance 600 Ω)
 - Voltage 0~10V (Maximum load current 2mA)
- **Resolution**
 - About 1/8000
- **Accuracy of output**
 - ±1.0% FS (5~100%)
Control output Proportional band (P): OFF or 0.1~999.9% FS (ON-OFF action by OFF)
Integral time (I): OFF or 1~6000 seconds (P or PD action by OFF)
Derivative time (D): OFF or 1~3600 seconds (P or PI action by OFF)
Target value function: OFF or 0.01~1.00
ON/OFF hysteresis: 1~999 units
Manual reset: ±50.0% (Effective when I = OFF)
Output limiter: Lower limit 0.0~99.9%, higher limit 0.1~100.0%
Proportional cycle: 1~120 seconds (when contact and SSR drive voltage output)
Manual control: 0.0~100.0% Setting resolution 0.1
Control output Proportional band (P): RA/DA to be set by front key

Isolation:
Contact output insulated from all AO (analog output) not insulated from SSR drive voltage, current or voltage output but insulated from others

External control input (DI)
Number of input points: 4
Type of input: Edge or level input (none, RUN/RST, HLD, ADV, FIX and start pattern No.)
DI1 fixed to RUN/RST for DI2~4, selectable from none, RUN/RST, HLD, ADV, FIX and start pattern No.
Input rating: Voltage 5V DC (0.5mA/1 input)
Input holding time: Minimum 0.125 seconds
Isolation: Not insulated from input and system but insulated from others.
Action input: No-voltage contact or open collector

Event output
Contact output rating: Normal open (1a × 3 common) 240V AC 1A (resistive load)
Action: ON-OFF action
Hysteresis: 1~999 units (during alarm output)
Types: Selectable from the following 16 types respectively for EV1, EV2 and EV3
No selection, Higher limit deviation, Lower limit deviation, Outside higher/lower limit deviations, Within higher/lower limit deviations, Higher limit absolute value, Lower limit absolute value, Scaleover, Hold, Guarantee soak, Time signal (2 types), RUN status, step signal, End signal, FIX
Event setting range:
Absolute value alarm: Within measuring range
Deviation alarm: Higher limit deviation –1999~2000 units, lower limit deviation –1999~2000 units
Outside higher/lower limit deviations: 0~2000 units
Within higher/lower limit deviations: 0~2000 units
Standby action: Selectable from the following 4 types respectively for EV1, EV2 and EV3
None, Standby 1 (standby only when power is applied), Standby 2 (standby when power is applied and when SV in execution is changed), and Standby 3 (input abnormality not output [Control mode])
Output updating cycle: 0.25 second
Isolation: Insulated from other inputs

Communication function (option)
Type of communication: RS-232C or RS-485
Communication system: RS-232C/3-line type half duplex system, RS-485/2-line type half duplex multi-drop (bus) system
Synchronization system: Start-stop synchronization system
Communication distance: RS-232C/Max. 15m, RS-485/Max. 500m (depending on conditions)
Communication address: 1~255
Communication speed: 1200, 2400, 4800, 9600, 19200 bps
Data format: 7 bits, even parity, 1 stop bit or 8 bits, non-parity, 1 stop bit
Communication delay: 1~100 (0.512msec/unit)
Communication BCC: Selectable from Addition (ADD), Addition + two’s complement (ADD_two’s cmp), Exclusive OR (XOR) and (None)
Communication memory mode: Selectable from EEPROM, rAm and r_E
Communication code: ASCII code
Communication protocol: Shimaden’s standard protocol
Number of connectable instruments: 1 for RS-232C, 31 for RS-485 (Address setting 1~255)
Isolation: insulated from other inputs and outputs
Others: Start character and BCC operation method also selectable

Analog output (option)
Number of output points: 1
Type of analog output: Selectable from measured value, target value (SV in execution) and control output
Output specification/rating: Current 4~20mA DC (Maximum load resistance 300 Ω)
Voltage 0~10V DC (Maximum load resistance 2mA)
0~10mV DC (Output resistance 10 Ω)
Output accuracy: ±0.3% FS (Comprehensive accuracy when measured value is output ±0.6% FS)
- Scaling : Within measuring range or output range (inversed scaling possible)
- Output resolution : About 1/10000
- Output updating cycle : 0.25 second
- Isolation : Not insulated from P.I.V. control output but insulated from others

- Status output (DO) (option)
 - Number of output points : 4
 - Type of output : None, scaleover, hold, guarantee soak, time signal (2 types), RUN status, step signal, end signal, FIX
 - Output specification/rating : Open collector darlington output, voltage 24V DC (maximum load current 20mA), saturation voltage during status output ON 1.2V
 - Output updating cycle : 0.25 second
 - Isolation : Insulated from other inputs and outputs

- Program
 - Number of patterns : Maximum 4 (setting 1, 2 or 4 possible)
 - Number of steps : Maximum 10~40 (Total number of steps = 40)
 - Number of PID types : Maximum 6
 - Number of zone PID types : Maximum 3
 - Zone hysteresis : 0~999 units
 - Time setting : 0 hour 0 minute–99 hours 59 minutes or 0 minute 0 second–99 minutes 59 seconds/1 step
 - Setting resolution : 1 minute or 1 second
 - Accuracy of time : ± (set time × 0.02% + 0.25 second)
 - Setting for each step : SV, step time and PID No.
 - Time signal : 2 outputs/pattern, to be set within time setting range
 - Number of pattern executions : Maximum 9999
 - PV start : ON/OFF
 - Guarantee soak : OFF, 1~999 units
 - Hold : Front key input or external control input
 - Advance : Front key input or external control input
 - Power failure compensation : ON/OFF (guarantee not applicable to the period of time of step in which power failure occurs)

- General specification
 - Data storage : Non-volatile memory (EEPROM)
 - Environmental conditions for instrument operation:
 - Temperature : –10~50˚C
 - Humidity : 90% RH or less (no dew condensation)
 - Height : 2000m from the sea level or lower
 - Category : II
 - Degree of pollution : 2
 - Storage temperature : –20–65˚C
 - Supply voltage : 100–240V AC±10% 50/60Hz
 - 24V AC/DC±10% (option)
 - Input/noise removal ratio : 50 dB or higher in normal mode (50/60 Hz)
 - 130 dB or higher in common mode (50/60 Hz)
 - Insulation resistance : Between input/output terminals and power terminal 500V DC 20 MΩ or above
 - Between input/output terminals and protective conductor terminal 500V DC 20 MΩ or above
 - Dielectric strength : Between input/output terminals and protective conductor terminal 2300V AC/minute
 - Between power terminal and protective conductor terminal 1500V AC/minute
 - Power consumption : 16VA maximum for AC, 7W for DC
 - Conformity with standards
 - Safety : IEC61010-1 and EN61010-1
 - EMC : EN61326
 - Protective structure : Only front panel has dust-proof and drip-proof structure equivalent to IP66.
 - Material of case : PPO (equivalent to UL94V-1)
 - External dimensions : H96 × W96 × D111mm (Panel depth: 100)
 - Panel thickness : 1~4mm
 - Mounting dimensions : H92 × W92mm
 - Weight : Approximately 450g